[QUOTE="MystikFollower"][QUOTE="bloodling"]
But it did happen, so however strange it may be we have to accept it, even though we don't understand it. There is nothing that tells us that there is something outside time and space.
hydratedleaf
Actually there is something that is outside the realm of relativity. Light. The speed of light is commonly understood as the absolute speed limit of the Universe, but if you were experiencing reality as the light, things would be much different than just travelling 186,282 mph. As we know, the closer to the speed of light an object approaches, the more time and space begins to bend. That's how many scientists say time travel is actually possible, however nothing with mass can attain the speed of light. Now if you were the light, travelling at the speed of light, your experience would be that it takes you no time or space to get anywhere. In reality, light exists in a timeless state, since once reaching the speed of light time would completely bend and you'd find yourself experience a timeless reality.
Light isn't outside time and space.To our perception no, it is not. But as I said, if you were travelling at the speed of light, time and space would shrink to nothing. Here is part of an interesting article I read on the subject of light and it's quite strange properties:
The theory of relativity sprang from the curious character of the speed of light. According to classical physics, measurements of the speed of light should vary according to the motion of the observer. Such variations happen all the time in everyday life. If, for example, you are cycling along a road at 20 m.p.h., and a car traveling at 30 m.p.h. passes you, then, relative to you, the car would be traveling at 10 m.p.h.. If you were to pedal a little faster, until you were also moving at 30 m.p.h., the car's speed relative to you would be zero, and you'd be able to have a conversation with the driver.
Light moves millions of times faster than a bike, so you wouldn't expect to notice any significant differences in its speed relative to you. Nevertheless, you would expect the same principal to apply. The faster you traveled, the slower would be the speed of light relative to you. But when physicists tried to detect these changes, they obtained puzzling results. Whether you traveled towards the light or away from it, the relative speed of light was always the same.
Perplexed by these findings, two American scientists, Albert Michelson and Edard Morley, designed an experiment that could detect variations in the speed of light to an accuracy of two miles per second, which was about a hundred times more accurate than the expected variation. Yet they still came up with exactly the same result. The observed speed of light never varied.
For the existing scientific paradigm, this was a major anomaly. Why did light not obey the same laws as everything else? It just didn't make sense.
Einstein's Paradigm shift
Enter the young Albert Einstein. Having failed his college entrance examinations in electrical engineering, and having been turned down for various teaching posts in mathematics and physics, he had finally gained employment as an "assistant, third class," in the Swiss patent office. During his spare time he pondered various mathematical and physical problems, including the inexplicable results of the Michelson-Morley experiment.
In 1905, at the age of 26, and virtually unknown to the scientific community, he published two seminal papers, one on the quantum nature of light, which we will come to shortly, and one on the "Electrodynamics of Moving Bodies," in which he proposed a radical resolution to the problem of the speed of light, laying the foundations for his Special Theory of Relativity.
The basic premise of relativity was not new. Two hundred and fifty years earlier, Galileo had realized that if you were in a closed room, with no windows, there would be no way of telling whether the room was at rest or moving with a steady velocity; any experiment you were to perform in a moving room would have the same results as one performed in a stationary room.
Imagine, for example, you are flying in a plane and you drop a tennis ball. The ball will fall vertically (from your perspective) to the floor and bounce up again towards your hand. It does not slam into the rear of the plane at 500 miles per hour. Relative to you, the ball behaves in the same way as it would if you were standing on the ground. You cannot tell from the ball's motion alone whether the plane is moving or at rest.
Galileo's theory–now known asclassical relativity–states that the laws of physics are the same in all uniformly moving frames of reference. The phrase "uniformly moving" is important. It means moving at a steady speed in a steady direction. If the plane were accelerating or turning, you could tell that you were moving. The ball would roll across the floor, and you might feel changes in the pressure of the seat against your body.
Classical relativity referred to the motion of physical objects; it said nothing about light. Einstein took classical relativity and brought it up to date. He proposed that the principle of relativity should be valid forallthe laws of physics, including those governing light. These, too, should be the same in all uniformly moving frames.
In 1864, James Clerk Maxwell had proposed that light consisted of electromagnetic waves, with their own equations of motion. These equations specified a precise value for the speed of light of 186,282 miles per second (that's about 670,000,000 miles per hour). If, as Einstein argued, these equations are the same in all uniformly moving frames of reference, then the speed of light must be the same in all such frames.
In other words, however fast you are moving you willalwaysmeasure the speed of light to be 186,282 miles per second–just as Michelson and Morley had found. Even if you were to travel at 186,281 miles per second, light would not pass by a mere 1 mile per second faster; it would still zoom by at 186,282 miles per second. You would not have caught up with light by even the tiniest amount.
This goes totally against common sense. But in this instance it is common sense that is wrong. Our mental models of reality have been derived from a lifetime's experience of a world where velocities are far below the speed of light. At speeds close to that of light, reality is very different.
The Relativity of Space and Time
That the speed of light is the same for all observers, however fast they are moving, is strange enough, but even stranger things are in store for our notions of space and time.
Einstein's equations of motion predict that moving clocks will run slower than clocks that are at rest. At the speeds we usually encounter, the difference is negligible. But as we approach the speed of light the effect becomes quite noticeable. If you were to travel past me at 80 percent the speed of light, I would observe your clocks running one third the speed of mine. This slowing applies not just to man-made clocks, but to all physical processes, to all chemical processes, and to all biological processes. Your whole world appears to run slower than mine. Time itself is running slower.
Weird as this may seem, experiments have shown that this slowing of time does actually happen. Very sensitive atomic clocks have been flown round the world, and they have been found to run slow by exactly the predicted amount. The change is very small–a factor of about one in a trillion–but it is there.
Nor is it just time that changes; space is also affected. As an observer approaches the speed of light, measurements of length (that is, measurements of space in the direction of motion) get shorter, and in exactly the same proportion as time slows. If you were passing by me at 80 percent the speed of light, your measurements of length would have shrunk to one third of mine.
Again this seems to defy common sense; space, like time, seems fundamental and fixed, not something that changes according to your speed. Nevertheless, experiments with subatomic particles traveling at speeds close to that of light have verified the effect. The faster you go, the more compressed space becomes.
For an observer actually traveling at the speed of light, the equations of Special Relativity predict that time would come to a complete standstill, and length would shrink to nothing. Physicists usually avoid considering this strange state of affairs by saying that, since nothing can ever attain the speed of light, we don't have to worry about any weird things that might go on at that speed.The Realm of Light
When physicists say nothing can ever attain the speed of light, they are talking of things with mass. Einstein showed that not only do space and time change as speed increases, so does mass. In the case of mass, however, the change is an increase rather than a decrease; the faster something moves, the greater its mass becomes. If an object were ever to reach the speed of light its mass would become infinite. However, to move an infinite mass would take an infinite amount of energy–more energy than there is in the entire universe. Thus, it is argued, nothing can ever attain the speed of light.
Nothing, that is, except light. Light travels at the speed of light. And it does so because it is not a material object; its mass is always precisely zero.
Since light travels at the speed of light, let's imagine a disembodied observer (pure mind with no mass) traveling at the speed of light. Einstein's equations would then predict that, from light's own point of view, it travels no distance and takes zero time to do so.
This points towards something very strange indeed about the light. Whatever light is, it seems to be in a realm where there is no duration; no before, and no after. There is only "Now."
Log in to comment